Mnaw,.mw
R
i

4

Table Example Page

eterial,

—Yves Saine Lzurent

A style docs not go out of seyle

) £
as long as it adapis itself 1o
its periad, When there is wi
incampatibility between the
style and a certain state of
wnind, it i never te style
that triunphs.

—Coco Chanel

Huw lilierating to wark in
the margins, owtside a
controf percepiion.

—~1Yon Delillo

Fve yradually risen from
X ‘))

L({J f(’t‘f"(’f!ﬂ.‘." flriricg.' o 1!?1(! to

foreci-class foreground.

—=Marvin Cohen

Cascading Style Sheets™ (CSS) 157

5.1 Introduction

In Chapter 4, we introduced the Extensible HyperText Markup Language (XHTML) for
marking up information to be rendered in a browser. In this chapter, we shift our focus to
formatting and presenting information. To do this, we use 2 W3C technology called Cas-
cading Style Sheets™ (CSS) thar allows document authors to specify the presentation of
elements on a web page (e.g., fonts, spacing, colors) separately from the structure of the
document (section headers, body text, links, etc.). This separation of structure from pre-
sentation simplifies maintaining and modifying a web page.

XHTML was designed to specify the content and structure of a document. Though
it has some ateributes that control presentation, it is better not to mix presentation with
content. If a website’s presentation is determined entirely by a style sheet, 2 web designer
can simply swap in a new style sheet to complerely change the appearance of the site. CSS
provides a way to apply style outside of XHTML, allowing the XHTML to dictate the
content while the CSS dictates how it’s presented.

As with XHTML, the W3C provides a CSS code validator located at jigsaw.w3.org/
css-validator/. [tis a good idea to validate all CSS code with this tool to make sure that
your code is correct and works on as many browsers as possible.

CSS is a large topic. As such, we can introduce only the basic knowledge of CSS that
you’ll need to understand the examples and exercises in the rest of the book. For more CSS
references and resources, check out our CSS Resource Center at www.deitel.com/css21.

The W3C’s C8S specification is currently in its second major version, with a third in
development. The current versions of most major browsers support much of the function-
ality in CSS 2. This allows programmers to make full use of its features. In this chapter,
we introduce CSS, demonstrate some of the features introduced in CSS 2 and discuss .
some of the upcoming CSS 3 features. As you read this book, open each XHTML docu-
ment in your web browser so you can view and interact with it in a web browser, as it was
originally intended.

158 Internet & World Wide Web How to Program

Remember that the examples in this book have been tested in Internet Explorer 7 and
Firefox 2. The latest versions of many other browsers {e.g., Safari, Opera, Konqueror)
should render this chapter’s examples propetly, but we have not tested them. Some exam-
ples in this chapter will not work in older browsers, such as Internet Explorer 6 and earlier.
Make sure you have either Internet Explorer 7 (Windows only) or Firefox 2 (available for
all major platforms) installed before running the examples in this chapter.

5.2 Inline Styles

You can declare document styles in several ways. This section presents inline styles that
declare an individual element’s formar using the XHTML attribute style. Inline styles
override any other styles applied using the techniques we discuss later in the chaprer.
Figure 5.1 applies inline styles to p elements to alter their font size and color.

Good Programming Practice 5.1

Inline styles do not truly separate presentation from content. To apply similar styles to multiple
elements, use embedded style sheets or external style sheets, introduced later in this chapter.

The first inline style declaration appears in line 17. Attribute style specifies an ele-
ment’s style. Each CSS property (font-size in this case) is followed by a colon and a
value. In line 17, we declare this particular p element to use 20-point font size.

Fig. 5.1 | Usinginline styles. {Part | of 2.}

Cascading Style Sheets™ ({CSS) 159

This text does not have any style spplied to i

i This text has the font-size style applied to it,

making it 20pt.

This text has the font-size and color styles
applied to it, making it 20pt. and light blue.

Fig. 5.1 | Using inline styles. (Part 2 of 2.)

Line 21 specifies the two properties, font-size and color, separated by a semicolon.
In this line, we set the given paragraph’s color to light blue, using the hexadecimal code
#6666Ff. Color names may be used in place of hexadecimal codes. We provide a list of
hexadecimal color codes and color names in Appendix B, XHTML Colors.

5.3 Embedded Style Sheets

A second technique for using style sheets is embedded style sheets. Embedded style sheets
enable a you to embed an entire CSS$ document in an XHTML document’s head section.
To achieve this separation between the CSS code and the XHTML that it styles, we will
use CSS selectors. Figure 5.2 creates an embedded style sheet containing four styles.

“Font-weight: bold; .

color: black }. = RS
{ font-family: tahoma, helvetica, sans-serif }
A font-size; 12pL;.

amily: arial, sans-serif }
#6666FF } T

Fig. 5.2 | Embedded style sheets. (Part | of 2.)

160 Internet & World Wide Web How to Program

special">Deitel

Deitel & Associates, Inc.

Deitel & Associates, Inc. is an internationafly recognized cerporate traning and
publishing organization specializing in programming languages, internet/Worid
Wide Web fechnology and object technology education. The company peovides
courses on Java, C++, Visual Basic, C¥, C, infernet and World Wide Web
programming, Object Technology, and more.

Clients

The company's thents include mary Fortune 1000 companies, government
agencies, branches of the miffary and business organizations. Throughits
publistung partnership with Prentice HaB, Deitel & Associates, Inc publishes
leading-edge programming textbooks, professional books, interachve web-
based mufimedia Cyber Classrooms, satefile courses and DVD and web-
based video courses.

Fig. 5.2 | Embedded style sheets. (Part 2 of 2.)

The style element (lines 12-19) defines the embedded style sheet. Styles placed in
the head apply to marching elements wherever they appear in the entire document. The
style clement’s type attribute specifies the Multipurpose Internet Mail Extensions
(MIME) type thar describes a file’s content. CSS documents use the MIME type text/
css. Other MIME types include image/gif (for GIF images), text/javascript (for the
JavaScriprt scripting language, which we discuss in Chapters 6-11), and more.

Cascading Style Sheets™ (CSS) 161

‘The body of the style sheet (lines 13-18) declares the CSS rules for the style sheet. A
CSS selector determines which elements will be styled according to a rule. Our first rule
begins with the selector em (line 13) to select all em elements in the document. The font-
weight property in line 13 specifies the “boldness” of text. Possible values are bold, normal
(the default), bolder (bolder than bold text) and 14ghter (lighter than normal text). Bold-
ness also can be specified with multiples of 100, from 100 to 900 {e.g., 100, 200, ..., 900).
Text specified as normal is equivalent to 400, and bold text is equivalent to 700. However,
many systems do not have fonts that can scale with this level of precision, so using the
values from 100 to 900 might not display the desired effect.

In this example, all em elements will be displayed in a bold font. We also apply styles
o all h1 (line 15) and p (lines 16-17) elements. The body of each rule is enclosed in curly
braces ({ and }).

Line 18 uses a new kind of selector to declare a style class named special. Style classes
define styles that can be applied to any element. In this example, we declare class special,
which sets color to blue. We can apply this style to any element type, whereas the other
rules in this style sheer apply only to specific element types defined in the style sheet (ie.,
em, h1 or p). Style-class declarations are preceded by a period. We will discuss how to apply
a style class momentarily.

CSS rules in embedded style sheets use the same syntax as inline styles; the property
name is followed by a colon (:) and the value of the property. Multiple properties are sep-
arated by semicolons (;}. In the rule for em elements, the color property specifies the color
of the text, and property font-weight makes the font bold.

The font-family property (line 15) specifies the name of the font to use. Not all users
have the same fonts installed on their computers, so CSS allows you to specify 2 comma-
separated list of fonts to use for a particular style. The browser attempts to use the fonts in
the order they appear in the list. It’s advisable to end a font list with a generic font family
name in case the other fonts are not installed on the user’s computer. In this example, if
the tahoma font is not found on the system, the browser will look for the helvetica font.
If neither is found, the browser will display irs default sans-seri f font. Other generic font
families include serif (e.g., times new roman, Georgia), cursive (e.g., script), fantasy
(e.g., critter) and monospace {c.g., courier, fixedsys).

The font-size property (line 16) specifies a 12-point font. Other possible measure-
ments in addition to pt (point) are introduced later in the chapter. Relative values— xx-
small, x-small, small, smaller, medium, 1arge, larger, x-large and xx-large—also
can be used. Generally, relative values for font-size are preferred over point sizes because
an author does not know the specific measurements of the display for each client. Relative
font-size values permit more flexible viewing of web pages.

For example, a user may wish to view a web page on a handheld device with a small
screen. Specifying an 18-point font size in a style sheet will prevent such a user from seeing
more than one or two characters at a time. However, if a relative fone size is specified, such
as large or larger, the actual size is determined by the browser that displays the font.
Using relative sizes also makes pages more accessible to users with disabilities. Users with
impaired vision, for example, may configure their browser to use a larger default font,
upon which all relative sizes are based. Text that the author specifies to be smaller than
the main text still displays in a smaller size font, yet it is cleatly visible to each user. Acces-
sibility is an important consideration—in 1998, congress passed the Section 508

162 Internet & World Wide Web How to Program

Amendment to the Rehabilitation Act of 1973, mandating that websites of government
agencies are required to be accessible to disabled users.

Line 23 uses the XHTML attribute c1ass in an h1 element to apply a style class—in this
case class special (declared with the . special selector in the style sheet on line 18). When
the browser renders the h1 element, note that the text appeats on screen with the properties of
both an h1 element (arial or sans-serif font defined in line 17) and the .special style
class applied (the color #6666 defined in line 18). Also notice thar the browser still applies
its own defaulr style to the hi element—the header is still displayed in a large font size. Simi-
larly, all em elements will still be italicized by the browser, but they will also be bold as a result
of our style rule.

The formatting for the p element and the . special class is applied to the text in lines
34-41. In many cases, the styles applied to an element (the parent or ancestor element) also
apply to the element’s nested elements (child or descendant elements). The em element
nested in the p element in line 35 inherits the style from the p element (namely, the 12-
point font size in line 16) but retains its italic style. In other words, styles defined for the
patagraph and not defined for the em element is applied to the em element. Because mul-
tiple values of one property can be set or inherited on the same element, they must be
reduced to one style per element before being rendered. We discuss the rules for resolving
these conflicts in the next section.

5.4 Conflicting Styles

Styles may be defined by a user, an author or a user agent (e.g., a web browser). A user is
a person viewing yout web page, you are the author—the person who writes the docu-
ment—and the user agent is the program used to render and display the document. Styles
“cascade,” or flow together, such that the ultimate appearance of elements on a page results
from combining styles defined in several ways. Styles defined by the user take precedence
over styles defined by the user agent, and styles defined by authors take precedence over
styles defined by the user.

Most styles defined for parent elements are also inherited by child (nested) elements.
While it makes sense to inherit most styles, such as font properties, there are certain prop-
erties that we don’t want to be inherited. Consider for example the background-image
ptoperty, which allows the programmer to set an image as the background of an element.
If the body element is assigned a background image, we don’t want the same image tw be
in the background of every element in the bedy of our page. Instead, the background-
image property of all child elements retains its default value of none. In this section, we
discuss the rules for resolving conflicts between styles defined for elements and styles
inherited from parent and ancestor elements.

Figure 5.2 presented an example of inheritance in which a child em element inherited
the font-size property from its parent p element. However, in Fig. 5.2, the child em ele-
ment had a color property that conflicted with (i.e., had a different value than) the color
property of its parent p element. Properties defined for child and descendant elements
have a greater specificity than properties defined for parent and ancestor elements. Con-
flicts are resolved in favor of properties with a higher specificity. In other words, the styles
explicitly defined for a child element are more specific than the styles defined for the
child’s parent element; therefore, the child’s styles take precedence. Figure 5.3 illustrates
examples of inheritance and specificity.

Cascading Style Sheets™ (CSS} 163

Line 12 applies property text-decoration to all a elements whose class attribute is
set to nodec. The text-decoration property applies decorations to text in an element. By
default, browsers underfine the text of an a {anchor) element. Here, we set the text-de-
coration property to none to indicate that the browser should not underline hyperlinks.
Other possible values for text-decoration include overline, Tine-through, underline
and blink. [Note: b1ink is not supported by Internet Explorer.] The .nodec appended to
a is a more specific class selector; this style will apply only ro a (anchor) clements that
specify nodec in their class atribure.

.nodec { text-decoration:
shover - { text-decoration: un

Fig. 5.3 | Inheritance in style sheets. (Part | of 2.)

164 Internet & World Wide Web How to Program

g

Shopping list for Monday:

* Milk

+ Bread Bhare Stybes Windows Toternel baphote
o White bread
o Rys braad

4 Shopping list for Monday:

+ Mik
+ Bread
© White bread
o Rys tbread
o Whele whest bread
» Rice
» Potatoes
o Pizza with mushrooms

Go_tamaﬁme%amn

Fig. 5.3 | Inheritance in style sheets. (Part 2 of 2.)

» Portability Tip 5.1

To ensure that your style sheets work in various web browsers, test them on all the client web
® browsers that will render documents using your styles, as well as using the W3C CSS Validator.

Line 13 specifies a style for hover, which is a pseudoclass. Pseudoclasses give the
author access to content not specifically declared in the document. The hover pseudoclass
is activated dynamically when the user moves the mouse cursor over an element. Note that

pseudoclasses are separated by a colon (with no surrounding spaces) from the name of the
element to which they are applied.

aCommon Programming Error 5.1

Including a space before or afier the colon separating a pseudaclass from the name of the element
to which it is applied is an ervor that prevents the pseudoclass from being applied properly.

Line 14 causes all em elements that are children of 11 elements to be bold. In the screen
outpur of Fig. 5.3, note that Go to the (contained in an em element in line 37) does not
appear bold, because the em element is not in an 11 element. However, the em element con-
taining with mushrooms (line 34) is nested in an 11 element; therefore, it is formarted in
bold. The syntax for applying rules to multiple elements is similar. In line 15, we separate
the selectors with a comma to apply an underline style rule to all h1 and all em elements.

Line 16 assigns a left margin of 20 pixels to all u1 elements. We will discuss the margin
properties in detail in Section 5.9. A pixel is a relative-length measurement—it varies in

Cascading Style Sheets™ (CS8S) 165

size, based on screen resolution. Other relative lengths include em (the M-height of the
font, which is usually set to the height of an uppercase M), ex (the x-height of the font,
which is usually set to the height of a lowercase x) and percentages (e.g., font-size: 50%).
To set an element to display text at 150 percent of its default texr size, the author could
use the syntax

font-size: 1.5em

Alternatively, you could use
font-size: 150%

Other units of measurement available in CSS are absolute-length measurements—i.e.,
units that do not vary in size based on the system. These units are in (inches), em (centi-
meters), mm {millimeters), pt (points; 1 pt = 1/72 in) and pe (picas; 1 pc = 12 pt). Line 17
specifies that all nested unordered lists (ul elements that are descendants of ul elements)
are to have font size .8em. [Note: When setting a style property that takes a measurement
{e.g. font-size, margin-left), no units are necessary if the value is zero.]

Good Programming Practice 5.2

Whenever possible, use relative-length measurements. If you use absolute-length measurements,
your document may not be readable on some client browsers (.., wireless phones),

5.5 Linking External Style Sheets

Style sheets are a convenient way to create a document with a uniform theme. With exter-
nal style sheets (i.c., separate documents that conrain only CSS rules), you can provide a
uniform look and feel to an entire website. Different pages on a site can all use the same
style sheet. When changes to the styles are required, the author needs to modify only a sin-
gle CSS file to make style changes across the entire website. Note thar while embedded
style sheets separate content from presentation, both are still contained in a single file, pre-
venting a web designer and a content author from working in parallel. External style sheets
solve this problem by separaring the content and style into separate files.

oftware Engineering Observation 5.1

Abways use an external style sheet when developing a website with multiple pages. External style
iheets separate content fram presentation, allowing for more consistent look-and-feel, more

efficient development, and betrer performance.

Figure 5.4 presents an external style sheet. Lines 1-2 are CSS comments. Like
XHTML comments, CSS comments describe the content of a CSS document. Comments
may be placed in any type of CSS code (i.e., inline styles, embedded style sheets and
external style sheets) and atways start with /* and end with */. Text between these delim-
iters is ignored by the browser.

Fig. 5.4 | External style sheet. (Part | of 2.)

166 Internet & World Wide Web How to Program

- SRR e
Fig. 5.4 | External style sheet. (Part 2 of 2.)

Figure 5.5 contains an XHTML document that references the external style sheet in
Fig. 5.4. Lines 10-11 (Fig. 5.5) show a 1ink element that uses the re1 attribute to specify
a relationship between the current document and another document. In this case, we
declare the linked document to be a stylesheet for this document. The type attribute
specifies the MIME type of the related document as text/css. The href attribute pro-
vides the URL for the document containing the style sheet. In this case, styles.css is in
the same directory as external.html.

<tink rel = "stylesheet” type =
href = “styles.css” />

Fig. 5.5 | Linking an external style sheet. (Part | of 2.)

Cascading Style Sheets™ (CSS) 167

©pimkang |xdernal Style Sheets Wisidaws Infeens Fxplerer

Shopping list for Monday:

« Mitk
» Bread
o White bread
o Rye bread
o Whole wheat bread
« Rice .
« Potatoes
« Pizza with musfirooms

Mﬁm%ﬁﬂm

Fig. 5.5 | Linking an external style sheet. {Part 2 of2.)

oftware Engineering Observation 5.2

External style sheets are reusable. Creating them once and reusing them reduces programming

S i
= Performance Tip 5.1

‘Reusing external style sheets reduces load time and bandwidth usage on a server, since the style
sheet can be downloaded once, stored by the web browser, and applied to all pages on a website,

5.6 Positioning Elements

Before CSS, controlling the positioning of elements in an XHTML document was diffi-
cult—the browser determined positioning, CS$ introduced the position property and a
capability called absolute positioning, which gives authors greater control over how doc-
ument elements are displayed. Figure 5.6 demonstrates absolute positioning.

168 Internet & World Wide Web How to Program

{ position: absolute;
top: Opx;
left: Opx:
z-index: 1 }
position;: absolute;
top: 25px;
left: 100px;
z-index: 2 }

[position: absolute;

Lorepy 25pxi.
ieft: 100px;
Z-index: 3;

Fig. 5.6 | Absolute positioning of elements. (Part | of 2.)

Cascading Style Sheets™ (CSS) 169

tes

Fig. 5.6 | Absolute positioning of elements. (Part 2 of 2.}

Normally, elements are positioned on the page in the order that they appear in the
XHTML document. Lines 11-14 define a style called bgimg for the first img element
(1.gif) on the page. Specifying an element’s position as absolute removes the element
from the normal flow of elements on the page, instead positioning it according to the dis-
tance from the top, Teft, right or bottom margins of its containing block-level element
(i.e., an element such as body or p). Here, we position the element to be 0 pixels away from
both the top and left margins of its containing element. In line 28, this style is applied
to the image, which is contained in a p element.

The z-index property allows you to layer overlapping elements properly. Elements
that have higher z-index values are displayed in front of elements with lower z-index
values. In this example, i.g1f has the lowest z-index (1), so it displays in the background.
The . fgimg CSS rule in lines 15-18 gives the circle image (circle.gif, inlines 31-32) a
z-index of 2, so it displays in front of i.gif. The p element in line 34 (Positioned Text)
is given a z-index of 3 in line 22, so it displays in front of the other two. If you do not
specify a z-index or if elements have the same z-index value, the elements are placed from
background to foreground in the order they are encountered in the document.

Absolute positioning is not the only way to specify page layout. Figure 5.7 demon-
strates relative positioning, in which elements are positioned relative to other elements.

Fig. 5.7 | Relative positioning of elements. (Part | of 2.}

(F{ intemet & World Wide Web How to Program

.sub { position: relative;
bottom: -lex }

.shiftieft { position: relative;
Teft: -lex }

.shiftright { position: relative;
rig

The text at the end of this sentence i nsupemseint,
The text at the end of this sentence , . . e

The text at the end of this sentences snredlen .

The text at the end of this sentence is shifted right

Fig. 5.7 | Relative positioning of elements. (Part 2 of 2.)

Setting the position property to relative, as in class super (lines 16-17), lays out
the element on the page and offsets it by the specified top, bottom, Teft or right value.
Unlike absolute positioning, relative positioning keeps elements in the general flow of ele-
ments on the page, so positioning is relative t other elements in the flow. Recall that ex

Cascading Style Sheets™ (C5S) ITl

(line 17) is the x-height of a font, a relative-length measurement typically equal to the
height of a lJowercase x.
Common Programming Error 5.2

Because relative positioning keeps elements in the flow of text in your documents, be careful to
avoid unintentionally overlapping text.

Inline and Block-Level Elements

We introduce the span element in line 28. Lines 13-15 define the CSS rule for ali span
elements. The height of the span determines how much vertical space the span will occ-
upy. The font-size determines the size of the text inside the span.

Element span is a grouping element—it does not apply any inherent formatting to
its contents. [ts primary purpose is to apply CSS rules or id attributes to a section of text.
Element span is an inline-level element—it applies formatting to text without changing
the flow of the document. Examples of inline elements include span, img, a, em and
strong. The div element is also a grouping element, but it is a block-level element. This
means it is displayed on its own line and has a virtual box around it. Examples of block-
level elements include div, p and heading elements (h1 through h6), We'll discuss inline
and block-level elements in more detail in Section 5.9.

5.7 Backgrounds

CSS provides control over the background of block-level elements. CSS can set a back-
ground color or add background images to XHTML elements. Figure 5.8 adds a corporate
logo to the bottom-right corner of the document. This logo stays fixed in the corner even
when the user scrolls up or down the screen.

dy - {background-image: urlt(logo.gif);
ac d~position: bottom right;
nd-repeat: no-repeat;
“backg d-attachment: fixed;
‘Background-color: #eeeese ¥

Fig. 5.8 | Adding background images and indentation. (Part | of 2.)

112 Intenet & World Wide Web How to Program

"This example uses the background:image;
background-position and background-attachmen
1 styles to place the Deitel & Assaciates, Inc. Iog@-;-
] inthe bottom fight corner of the page Notu;g

fesize the browser window. The backgrounMolm _
fitls in- where there |s fio ;mage o

Fig. 5.8 | Adding background images and indentation. (Part 2 of 2.)

The background-image property (line 11} specifies the image URL for the image
Togo.gif in the format url (fileLocation). You can also set the background-color prop-
erty in case the image is not found (and to fill in where the image does not cover).

The background-position property (line 12) places the image on the page. The key-
words top, bottom, center, left and right are used individually or in combination for
vertical and horizontal positioning. An image can be positioned using lengths by speci-
fying the horizontal length followed by the vertical length. For example, to position the
image as horizontally centered (positioned at 50 percent of the distance across the screen)

- and 30 pixels from the top, use

background-position: 50% 30px;

The background-repeat property (line 13) controls background image tiling, which
places multiple copies of the image next to each other to fill the background. Here, we set
the tiling to no-repeat to display only one copy of the background image. Other values
include repeat (the default) ro tile the image vertically and horizontally, repeat-x to tile
the image only horizontally or repeat-y to tile the image only vertically.

Cascading Style Sheets™ ((C55) 173

The final property setiing, background-attachment: fixed (line 14), fixes the image
in the position specified by background-position. Scrolling the browser window will not
move the image from its position. The default value, scro11, moves the image as the user
scrolls through the document.

Line 18 uses the text-indent property to indent the first line of text in the element
by a specified amount, in this case 1em. An author might use this property to create a web
page that reads more like a novel, in which the first line of every paragraph is indented.

Another CSS property that formats text is the font-style property, which allows the
developer to set text to none, italic or oblique (oblique is simply more slanted than
italic—the browser will default to italic if the system or font does not support oblique
text).

5.8 Element Dimensions

In addition to positioning elements, CSS rules can specify the actual dimensions of each
page element. Figure 5.9 demonstrates how to set the dimensions of elements.

e
Si7ed

<div style = "width: 20%; height:

Fig. 5.9 | Element dimensions and text alignment. (Part | of 2.)

174 Internet & World Wide Web How to Program

Fig. 5.9 | Element dimensions and text alignment. (Part 2 of 2.)

The inline style in line 17 illustrates how to set the width of an element on screen;
here, we indicate that the div element should occupy 20 percent of the screen width. The
height of an element can be set similarly, using the height property. The height and
width values also can be specified as relative or absolute lengths. For example,

width: 10em

sets the element’s width to 10 times the font size. Most elements are left aligned by default;
however, this alignment can be altered to position the element elsewhere. Line 22 sets text
in the element to be center aligned; other values for the text-align property include
left and right.

In the third div, we specify a percentage height and a pixel width, One problem with
setting both dimensions of an element is that the content inside the element can exceed
the set boundaries, in which case the element is simply made large enough for all the con-
tent to fit. However, in line 27, we set the overflow property t scroll, a setting that adds
scroll bars if the text overflows the boundaries.

5.9 Box Model and Text Flow

All block-level XHTML elements have a vircual box drawn around them based on what is
known as the box model. When the browser renders elements using the box model, the
content of each element is surrounded by padding, a border and a margin (Fig. 5.10).

CSS controls the border using three properties: border-width, border-color and
border-style. We illustrate these three properties in Fig. 5.11.

Cascading Style Sheets™ (CS5) 175

Padding
Border
Margin

Fig- 5.10 | Box model for block-level elements.

Property border -width may be set to any valid CSS length (e.g., em, ex, px, etc.) or to
the predefined value of thin, medium or thick. The border-color property sets the color.
[Note: This property has different meanings for different style borders.] The border-style
options are none, hidden, dotted, dashed, solid, double, groove, ridge, inset and
outset. Borders groove and ridge have opposite effects, as do inset and outset. When
border-style s set to none, no border is rendered.

Fig. 5.11 | Borders of block-level elements. (Part 1 of 2.)

176 Internet & World Wide Web How to Program

Fig. 5.11 | Borders of block-level elements. (Part 2 of 2.)

Each border property may be set for an individual side of the box (e.g., border-to-
pstyle or border-Teft-color). Note that we assign more than one class to an XHTML
element by separating multiple class names with spaces, as shown in lines 36-37.

As we have seen with absolute positioning, it is possible to remove elements from the
normal flow of text. Floating allows you to move an element to ope side of the screen;
other content in the document then flows around the floated element. Figure 5.12 demon-
strates how floats and the box model can be used to control the layout of an entire page.

Looking at the XHTML code, we can see that the general structure of this document
consists of 2 header and two main sections. Each section contains a subheading and a para-
graph of text.

Block-level elements (such as divs) render with a line break before and after their con-
tent, so the header and two sections will render vertically one on top of another. In the
absence of our styles, the subheading divs would also stack vertically on top of the text in
the p tags. However, in line 24 we set the float property to right in the class floated,
which is applied to the subheadings. This causes each subheading div to float to the right
edge of its containing element, while the paragraph of text will flow around it.

Line 17 assigns a margin of . 5em to all paragraph tags. The margin property sets the
space between the outside of the border and all other content on the page. In line 21, we
assign . 2em of padding to the floated divs. The padding property determines the distance
between the content inside an element and the inside of the element’s border. Margins for
individual sides of an element can be specified (lines 22-23) by using the properties
margin-top, margin-right, margin-left and margin-bottom. Padding can be specified in
the same way, using padding-top, padding-right, padding-left and padding-bottom.
To see the effects of margins and padding, try putting the margin and padding properties
inside comments and observing the difference.

Cascading Style Sheets™ (CSS) 177

Fig. 5.12 | Floating elements. (Part | of 2.)

178 [nternet & World Wide Web How to Program

Deitel & Associates, Inc. Is an
* internationally recognized

corporate training and "
publishing organization ;
specializing In programming languages, Intemet/World Wide Web
technology and object technology education. The company
provides courses on Java, C++, Visual Basic, C, Intemet and
World Wide Web programming, and Object Technology.

. Through its publishing
partnership with Prentice Hall,
Dettel & Associates, Inc. N
publishes leading-edge 4
. programming textbooks, professional books, interactive CD-ROM- E .

Fig. 5.12 | Floating elements. (Part 2 of 2.)

In line 27, we assign a border to the section boxes using a shorthand declaration of
the border properties. CSS allows shorthand assignments of borders to allow you to define
all three border properties in one line. The syntax for this shorthand is border: <width>
<style> <color>. Our border is one pixel thick, solid, and the same color as the back-
ground-color property of the heading div (line 11). This allows the border to blend with
the header and makes the page appear as one box with a line dividing its sections.

5.10 Media Types

CSS media types allow a programmer to decide what a page should look like depending
on the kind of media being used to display the page. The most common media type fora
web page is the screen media type, which is a standard computer screen. Other media
types in CSS 2 include handheld, braille, aural and print. The handheld medium is
designed for mobile Internet devices, while brai1le is for machines that can read or print
web pages in braille. aural styles allow the programmer to give a speech-synthesizing web
browser more information about the content of the web page. This allows the browser to
present a web page in a sensible manner to a visually impaired person. The print media
type affects a web page’s appearance when it is printed. For a complete list of CSS media
types, see http://www.w3.org/TR/REC-CS52/media. htmi#media-types.

Media types allow a programmer to decide how a page should be presented on any
one of these media without affecting the others. Figure 5.13 gives a simple example that
applies one set of styles when the document is viewed on the screen, and another when the
document is printed. To see the difference, look at the screen captures below the paragraph
or use the Print Preview feature in Internet Explorer or Firefox.

Cascading Style Sheets™ (CSS) 179

In line 11, we begin a block of styles that applies to all media types, declared by @media
a1l and enclosed in curly braces ({ and }). In lines 13-18, we define some styles for all
media types. Lines 20-27 set styles to be applied only when the page is printed, beginning
with the declaration @media print and enclosed in curly braces.

The styles we applied for all media types look nice on a screen but would not look
good on a printed page. A colored background would use a lot of ink, and a black-and-

white printer may print a page that’s hard to read because there isn’t enough contrast

Fig. 5.13 | CSS media types. {Part | of 2.)

180 Intenet & World Wide Web How to Program

CSS Media Types Example

This example uses CSS media types to vary how the page appears in print and how it
appears on any ather media. This text will appear ane font on the soreen and a different
font on paper or in a print preview. Ts see the difference in intemet Explorer, go to the
Print meni and select Print Preview. In Firefox, select Print Preview from the File menu.

Fig. 5.13 | CSS media types. (Part 2 of 2.)

between the colors. Also, sans-serif fonts like arial, helvetica, and geneva are easier
to read on a screen, while serif fonts like times new roman are easier to read on paper.

~n L00k-and-Feel Observation 5.1

ages with dark background colors and light text use a lot of ink and may be difficult to read
when printed, especially on a black-and white-printer. Use the print media type to avoid this.

Look-and-Feel Observation 5.2

n general, sans-serif fonts look better on a screen, while serif fonts look better on paper. The
print media type allows your web page to display sans-sevif font on a screen and change to a serif
Jont when it is printed.

To solve these problems, we apply specific styles for the print media type. We change
the background-color of the body, the color of the hl tag, and the font-size, color,
and font-family of the p tag to be more suited for printing and viewing on paper. Notice
that most of these styles conflict with the declarations in the section for all media types.
Since the print media type has higher specificity than a11 media types, the print styles
overtide the styles for all media types when the page is printed. Since the font-family

Cascading Style Sheets™ (CSS} 181

property of the h1 tag is not overridden in the print section, it retains its old value even
when the page is printed.

5.11 Building a CSS Drop-Down Menu

Drop-down menus are a good way to provide navigation links on a website without using
a lot of screen space. In this section, we take a second look at the :hover pseudoclass and
introduce the display property to create a drop-down menu using CSS and XHTML.
We've already seen the :hover pseudoclass used to change a link’s style when the
mouse hovers over it. We will use this feature in a more advanced way to cause a menu o
appear when the mouse hovers over a menu button. The other important property we
need is the display property. This allows a programmer to decide whether an element is
rendered on the page or not. Possible values include block, inline and none. The block
and inline values display the element as a block element or an inline element, while none
stops the element from being rendered. The code for the drop-down menu is shown in

Fig. 5.14.

: TR B RIS ;
div.menuzhover a { display: block "’
div.menu a

div.menu arhover {§ backgr

eians
Fig. 5.14 | CSS drop-down menu. (Patt | of 2.)

182 Internet & World Wide Web How to Program

Fig. 5.14 | (CSS drop-down menu. (Part 2 of 2.)

First let’s look at the XHTML code. In lines 31-37, a div of class menu has the text
“Menu” and five links inside it. This is our drop-down menu. The behavior we want is;as
follows: the text that says “Menu” should be the only thing visible on the page, unless the -
mouse is over the menu div. When the mouse cursor hovers over the menu div, we want
the links to appear below the menu for the user to choose from.

To see how we get this functionality, let’s look at the CSS code. There are two lines
that give us the drop-down functionality. Line 21 selects all the links inside the menu div
and sets their display value to none. This instructs the browser not to render the links.
The other important style is in line 20. The selectors in this line are similar to those in line
21, except that this line selects only the a (anchor) elements that are children of a menu
div that has the mouse over it. The display: block in this line means that when the
mouse is over the menu div, the links inside it will be displayed as block-level elements.

2

Cascading Style Sheets™ (CSS) 183

The selectors in line 27 are also similar to lines 20 and 21. This time, however, the
style is applied only to any a element that is a child of the menu div when that child has
the mouse cursor over it. This style changes the background-color of the currently high-
lighted menu option. The rest of the CSS simply adds aesthetic style to the components of
our menu. Look at the screen captures or run the code example to see the menu in action.

This drop-down menu is just one example of more advanced CSS formatting. Many
additional resources are available online for CSS navigation menus and lists. Specifically,
check out List-o-Matic, an automatic CSS list generator located at www.accessify.com/
tools-and-wizards/developer-tools/1ist-o-matic/ and Dynamic Drive’s library of
vertical and horizontal CSS menus at www.dynamicdrive.com/style/.

5.12 User Style Sheets

Users can define their own user style sheets to format pages based on their preferences. For
example, people with visual impairments may want to increase the page’s text size. Web
page authors need to be careful not to inadvertently override user preferences with defined
styles. This section discusses possible conflicts between author styles and user styles.

Figure 5.15 contains an author style. The font-size is set to 9pt for all <p> tags that
have class note applied to them.

User style sheets are external style sheets. Figure 5.16 shows a user style sheet that sets
the body’s font-size to 20pt, color to yellow and background-color to #000080.

User style sheets are not Tinked to a document; rather, they are set in the browser’s
options. To add a user style sheet in IE7, select Internet Options..., located in the Tools
menu. In the Intemet Options dialog (Fig. 5.17) that appears, click Accessibility..., check
the Format documents using my style sheet checkbox, and type the location of the user
style sheet. Internet Explorer 7 applies the user style sheet to any document it loads. To
add a user style sheet in Firefox, find your Firefox profile using the instrucrions at

Fig. 5.15 | pt measurement for text size. (Part | of 2.)

184 Internet & World Wide Web How to Program

Thanks for visiting my website. 1 hope you enjoy i,

Ploase Note: This site will be moving soon. Please check prriodically for updates.

Fig. 5.15 | pt measurement for text size. (Part 2 of 2.)

Fig. 5.16 | User style sheet.

www.mozilla.org/support/firefox/profile#locate and place a style sheet called
userContent.css in the chrome subdirectory.

The web page from Fig. 5.15 is displayed in Fig. 5.18, with the user style sheet from
Fig. 5.16 applied.

In this example, if users define their own font-size in a user style sheet, the author
style has a higher precedence and overrides the user style. The 9pt font specified in the
author style sheet overrides the 20pt font specified in the user style sheet. This small font

Home pege:
T ke oM Do tabi, typ SCh SO O S Dwh N8,
Fr———

Fig. 5.17 | User style sheet in Internet Expiorer 7. (Part | of 2.)

Cascading Style Sheets™ {CSS) 185

+¢. Xvi { e

Fig. 5.18 | User style sheet applied with pr measurement.

may make pages difficult to read, especially for individuals with visual impairments. You
can avoid this problem by using relative measurements (e.g., em or ex) instead of absolute
measurements, such as pt. Figure 5.19 changes the font-size property to use a relative
measurement (line 11) that does not override the user style set in Fig. 5.16. Instead, the
font size displayed is relative to the one specified in the user style sheet. In this case, text
enclosed in the <p> tag displays as 20pt, and <p> tags that have class note applied to them
are displayed in 15pt (.75 times 20pt).

Fig. 5.19 | em measurement for text size. (Part [of 2.)

186 Internet & World Wide Web How to Program

Thanics for visiting my website. [bope vou enjoy t.

Plasse Note: This sire will be maving soo. Planss chick perodicslly for mpdatss.

Fig. 5.19 | em measurement for text size. (Part 2 of 2.)

Figure 5.20 displays the web page from Fig. 5.19 with the user style sheet from
Fig. 5.16 applied. Note thart the second line of text displayed is larger than the same line
of text in Fig. 5.18.

Fig. 5.20 | User style sheet applied with em measurement.

5.13 CSS 3

‘The W3C is currently developing CSS 3 and some browsers are beginning to implement
some of the new features that will be in the CSS 3 specification. We discuss a few of the
upcoming features that will most likely be included in CSS 3.

CSS 3 will allow for more advanced control of borders. In addition to the border-
style, border-color, and border-width properties, you will be able to set multiple

Cascading Style Sheets™ (C53) 187

border colors, use images for borders, add shadows to boxes, and create borders with
rounded corners.

Background images will be more versatile in CSS 3, allowing the programmer to set
the size of a background image, specify an offset to determine where in the element the
image should be positioned, and use multiple background images in one element. There
will also be properties to set shadow effects on text and more options for text overflow
when the text is too long to fit in its containing element.

Additional features will include resizable boxes, enhanced selectors, multicolumn lay-
outs, and more developed speech (aural) styles. The Web Resoutces section points you to
the Deitel CSS Resource Center, where you can find links to the latest informarion on the
development and features of CSS 3.

5.14 Web Resources

http://www.deitel.com/css21

The Deitel CSS Resource Center contains links o some of the best CSS information on the web.
There you'll find categorized links to tutorials, references, code examples, demos, videos, and more.
Check out the demos section for more advanced examples of layouts, menus, and other web page

components.

 ntem . ;‘; _ W&WWM"GW&& Hf"” mp“’g"’m ;

v, ;V'apiiymmmwaspmiﬁc«fmfthatshwid' e o
‘zaﬂ})Waudmmspmfya rypeafﬁmt instead of a spmﬁcfont,

T @p}y mics to oniy a certain ty'pe of clcmcm that isa chﬁd of armthcr txpc, sepmtc the
‘ ": mcs witﬁ spaces. :

7 Cascading Style Sheets™ (CSS) 191

iia 17T pesttion property
el F T peise media ype

© float property
floated element - -
- font-family property - - .
I fnnt—srizepmpmty Gy nnL i opsendodlass
‘fonmeightpmpmr CoTERT i e aerribute (19RK):
© genericfont family © - relative positioning
~grosve borderstyle relative-fength measurement
“ groupingelement’ -7 ©4¢ “rgpeat property value
- ‘handheld medidtype 0 SR ridge barder style
. height property <o T 0 L1 right property value
hiddenborderstyle - - 0 . sans-serif generic font ﬁumly
in (inch) - I screen media type
- ddherianos’ o7 Tt 0 T Coseral) property value
L -mlrm—hcvclelemem L - geledtor . . Lo
 inline style EE LT R separation ofstructu:efromeomem :
. insetbordersiyle. it i U Piserif genetic fone family
] _'largeréimfommze coTE T smal T relarive fonrsize
:-"hrgerrdamrcfmn ize. .. - .. smaller relative font size
o ' FI T snT-ud border style'

: _1rk border width
" 'thin bordér width -

- useragent -

-, user style sheet

. width property

. LT . T x-1arge relative font size
“‘averﬂowpmperty Lo T x-smal] relative font size

oveﬂmete:xtdmanon el 7 xx-large relative font size

: 'paddmg pmperty Do e xx-small relative font size
mpammclcmmt B ':'j' '_: - : _ zrindex property

Self- Revaew Exerclses

RN Assumcthzuhcmofthebasefontonasysccm is 12 points.
1 "a)" Howbigis 2 36-point font in ems?
- b) : How big:s & 9-point font in ems?
¢} : How big is a 24-point fonc in picas?
d) Haw big isa 12-point font in inches?
¢} "How big is a 1-inch fonr in picas?

192 ’“fﬂmt& Woéw;de fsb owto s

5.2 Fillin the blanks in the fol!owmg mtemerm.
a) Using the : i34
b) “Toapply a CSS rule to mm :}mnnmdemm
withca(n) ___ -
<} Pixels arc a(n) iength ressurement mﬂr_ 0t
d) The p&:udaclass:&acﬂumdwhmﬁzeum‘nmdx
speaﬁcd element.. - ‘
€) Setting the overflow pmgc:rgy por' o
content without comprosising spe B
— isageneric inline; dement thata;?pim Ten
agenemblockhvdeimwthatapplmaomhﬁmt ot
g) - Setting property hackgtomzd-ﬁrepem: o

vertically. e
h) Tobcgmablod;afsxylmdm%ﬁammﬁy

raton .. print, followed by an apmmgm ;
) The _propery llows oo |

;5.‘6 Makcanawganon blmon usmga: v with a lin
. dndtmaoiot amimakcthcmchange it hicved
‘cnmluylcshmMakemyoursql‘

Comment is froe, but fucts
are sacred.
w0 1Y Scotr

The crediver hath a better
miemory than the debtor,

—James Howell

When faved with a decision.
I always ask, “What wordd
be the mast fun?”

—Peggy Walker

E([mf[i!y, in a sacial sense,
may be divided into that of
condition and that of rights.

——James Fenimore Cooper

194 Internet & World Wide Web How to Program

rrrIpée: ngram Dtsplaymg aLineof Text ina Web Page';:f P
‘odifymg Our First Program DR T

ot @;Memury(:oncepts
6.6 r‘-‘iﬂthmetm

6.1 Introduction

In the first five chapters, we introduced the Internet and Web, web browsers, Web 2.0,
XHTML and Cascading Style Sheets (CSS). In this chapter, we begin our introduction to
the JavaScript! scripting language, which facilitates 2 disciplined approach to designing
computer programs that enhance the functionality and appearance of web pages.?

In Chapters 6-11, we present a detailed discussion of JavaScript—the de facto stan-
dard client-side scripting language for web-based applications due to its highly portable
nature. Our treatment of JavaScript serves two purposes—it introduces client-side
scripting (used in Chapters 6—13}, which makes web pages more dynamic and interactive,
and it provides the programming foundation for the more complex server-side scripting
presented later in the book.

We now introduce JavaScript programming and present examples that illustrate sev-
eral important features of JavaScript. Each example is carefully analyzed one line at a time.
In Chapters 7-8, we present a detailed treatment of program development and program
control in JavaScript.]

Before you can run code examples with JavaScript on your computer, you may need
to change your browser’s security settings. By default, Internet Explorer 7 prevents scripts
on your local computet from running, displaying a yellow warning bar at the top of the
window instead, To allow scripts to run in files on your computer, select Intermet Options
from the Tools menu. Click the Advanced tab and scroll down to the Security section of

1. Many people confuse the scripting language JavaScript with the programming language Java (from
Sun Microsystems, Inc.}. Java is a full-fledged object-oriented programming language. It can be used
to develop applications that execute on a range of devices—from the smallesr devices {such as cell
phones and PDAs) to supercomputers. Java is popular for developing large-scale distributed enter-
prise applications and web applications. JavaScript is a browser-based scripting language developed
by Netscape and implemented in all major browsers.

2. JavaScript was originally created by Netscape. Both Netscape and Microsoft have been instrumental
in the standardization of JavaScript by ECMA International as ECMAScript. Derailed information
about the current ECMAScript standard can be found at www. ecma-international.org/publica-
tions/standards/FCMA-262 , htm,

JavaScript: Introduction to Scripting 195

the Settings list. Check the box labeled Allow active content to run in files on My Computer
(Fig. 6.1). Click OK and restart Internet Explorer. XHTML documents on your own com-
puter that contain JavaScript code will now run properly. Firefox has JavaScript enabled

by default.

[P T S

£ secrty
73 Alow active conkank from COX to run on My Cotnputer®

Adow softwane 1o ns of install sven i the signabure i iy,
B4 Check for publicher's certificate revocation
{71 Chack for servar cortiicate revocation™
Check for signatures on downloadad programs
7} Da rot save oncrypted poges 1o disk
T Bty Tomgrary Intarnat Flas Foldwr when browser is it
[] Enabls Irtegratad Windows Authentication® .
£ Enabla native XMLHTTP support
[#hashing Fiter

) Dixabhe Phishing Fiker

-:dmmmmmmw -

Delates ok tenporary fes, distles provesr [T
m,mmsa;dmm
Vwmwﬁyw&&i!‘mmnhmmm.

I N

Fig. 6.1 | Enabling JavaScript in Internet Explorer 7

6.2 Simple Program: Displaying a Line of Text in a Web
Page

JavaScript uses notations that may appear strange to nonprogrammers. We begin by con-
sidering a simple script (or program) thac displays the text "Welcome to JavaScript Pro-
gramming!" in the body of an XHTML document. All major web browsers contain
JavaScript interpreters, which process the commands written in JavaScript. The Java-
Script code and its output in Internet Explorer are shown in Fig. 6.2.

This program illustrates several important JavaScript features. We consider each line
of the XHTML document and script in detail. As in the preceding chapters, we have given
each XHTML document line numbers for the reader’s convenience; the line numbers are
not part of the XHTML document or of the JavaScript programs. Lines 12—13 do the “real
work” of the script, namely, displaying the phrase Welcome to JavaScript Programming!
in the web page.

Line 8 indicates the beginning of the <head> section of the XHTML document. For
the moment, the JavaScript code we write will appear in the <head> section. The browser
interprets the contents of the <head> section first, so the JavaScript programs we write
there execute before the <body> of the XHTML document displays. In later chapters on
JavaScript and in the chapters on dynamic HTML, we illustrate inline scripting, in which
JavaScript code is written in the <body> of an XHTML document.

196 Internet & World Wide Web How to Program

ript Wirio

Fig. 6.2 | Displaying a line of text.

Line 10 uses the <script> tag to indicate to the browser that the text which follows
is part of a script. The type attribute specifies the type of file as well as the scripting lan-
guage used in the script—in this case, a text file written in javascript. Both Internet
Explorer and Firefox use JavaScript as the default scripting language.

Line 11 contains the XHTML opening comment tag <! --. Some older web browsers
do not support scripting. In such browsers, the actual text of a script often will display in
the web page. To prevent this from happening, many script programmers enclose the
script code in an XHTML comment, so that browsers that do not support scripts will
simply ignore the script. The syntax used is as follows:

<script type = '"text/javascript’>
<l--
script code here
/o>

</script>

When a browser that does not support scripts encounters the preceding code, it ignores
the <script> and </script> tags and the script code in the XHTML comment. Browsers

-

JavaScript: Introduction to Scripting 197

that do support scripting will interpret the JavaScript code as expected. [Note: Some
browsers require the JavaScript single-line comment // (see Section 6.4 for an explana-
tion} before the ending XHTML comment delimiter (-->) to interpret the script properly.
The opening HTML comment tag (<!--) also serves as a single line commenr delimiter
in JavaScript, therefore it does not need to be commented.)

, Portability Tip 6.1

Some browsers dp not suppert the <scripts...</script> tags. If your documens is 1w be ren-
% derved with such browsers, enclose the script code between these tags in an XHTML comment, so
that the script text does not get displayed as part of the web page. The closing comment tag of the
XHTML comment.(-->) is preceded by a JavaScript comment (//) to prevent the browser from
trying wo interpret the XHTML comment as a JavaScript starement.

Lines 12-13 instruct the browser’s JavaScript interpreter to perform an action,
namely, to display in the web page the string of characters contained between the double
quotation (") marks. A string is sometimes called a character string, a message or a string
literal. We refer to characters berween double quotation marks as strings. Individual
white-space characters between words in a string are not ignored by the browser. However,
if consecutive spaces appear in a string, browsers condense them to a single space. Also, in
most cases, browsers ignore leading white-space characters (i.e., white space ar the begin-
ning of a string).

Software Engineering Observation 6.1

R Strings in JavaScript can be enclosed in either double quotation marks (") or single quotation
marks ('),

Lines 12-13 use the browser’s document object, which represents the XHTML doc-
ument the browser is currently displaying. The document object allows you to specify text
to display in the XHTML document. The browser contains a complete set of objects that
allow script programmers to access and manipulate every element of an XHTML docu-
ment. In the next several chaprers, we overview some of these objects as we discuss the
Document Object Mode! (DOM).

An object resides in the computer’s memory and conuins information used by the
script. The term object notmally implies thar attributes (data) and behaviors (methods)
are associated with the object. The object’s methods use the attributes to perform useful
actions for the client of the object (i.¢., the script that calls the methods). A method may
require additional information (arguments) to perform its action; this information is
enclosed in parentheses after the name of the method in the script. In lines 12-13, we call
the document object’s wri teln method to write a line of XHTML markup in the XHTML
document. The parentheses following the method name writeln conrain the one argu-
ment that method writeln requires (in this case, the string of XHTML that the browser
is to display). Mecthod wri teln instructs the browser to display the argument string. If the
string contains XHTML elements, the browser interprets these elements and renders them
on the screen. In this example, the browser displays the phrase Welcome to JavaScript
Programming! as an hl-level XHTML heading, because the phrase is enclosed in an h1 cle-
ment.

The code elements in lines 12-13, including document .writeln, its argument in the
parentheses (the string) and the semicolon (;), together are called 2 statement. Every

198 Internet & World Wide Web How to Program

statement ends with a semicolon (also known as the statement terminator), although this
practice is not required by JavaScript. Line 15 indicates the end of the script.

Good Programming Practice 6.1

& Always include a semicolon at the end of a statement to terminate the statement. This notation
clarifies where one statement ends and the next statement begins.

Commeon Programming Error 6.1

Forgetting the ending </script> tag for a script may prevent the browser from interpreting the
script properly avd may prevent the XHTML document from loading properly.

The </head> tag in line 16 indicates the end of the <head> section. Also in line 16,
the tags <body> and </bedy> specify that this XHTML document has an empty body.
Line 17 indicates the end of this XHTML document,

We are now ready to view our XHTML document in a web browser——open it in
Internet Explorer or Firefox. If the script contains no syntax errors, it should produce the
output shown in Fig. 6.2.

Common Programming Error 6.2

JavaScript is case sensitive. Not using the proper uppercase and lowercase letters is @ syntax error.
A syntax error occurs when the script interpreter cannot recognize a statement. The interpreter
normally issues an error message to help you locate and fix the incorvect statement. Syntax errors
are violations of the rules of the programming language. The interpreter notifies you of a syntax
error when it attempts to execute the statement containing the error. The JavaScript interpreter
in Internet Explorer reports all syntax ervors by indicating in a separate popup window that a
‘runtime error” has occurred (i.e., a problem occurred while the interpreter was running the
script). (Note: To enable this fearure in IE7, select Internet Options... from the Tools menu.
In the Internet Options dialog that appears, select the Advanced tab and click the checkbox lab-
elfed Display a notification about every script error under the Browsing category. Firefox has
an error console that reports JavaScript errors and warnings. It is accessible by choosing Error
Console from the Tools menu.]

Error-Prevention Tip 6.1
@ Wihen the interpreter reports a syntax ervor, sometimes the ervor is not on the line number indi-

cated by the error message. First, check the line for which the error was reported. If that line does
nor contain errors, check the preceding several lines in the script.

0

6.3 Modifying Our First Program

This section continues our introduction to JavaScript programming with two examples
that modify the example in Fig. 6.2.

Displaying a Line of Colored Text
A script can display Welcome to JavaScript Programming! several ways. Figure 6.3 uses
two JavaScript statements to produce one line of text in the XHTML document. This exa-
mple also displays the text in a different color, using the CSS color property.

Most of this XHTML document is identical to Fig. 6.2, so we concentrate only on
lines 1214 of Fig. 6.3, which display one line of text in the XHTML document. The first
statement uses document method write to display a string. Unlike writeln, write does

JavaScript: Introduction to Scripting 199

: 3§
ocument.write("<hl style = \"¢color:
ocument.write("Welcome to JavaScript " +
“iwppggramming!</h1>" 33

G‘v@ v 8 CyexemplesichiBiwelcome?. himt

[—

% o

Welcome to JavaScript Programming!

TRy Compuer R

Fig. 6.3 | Printing one line with separate statements.

not position the output cursor in the XHTML document at the beginning of the next line
after writing its atgument. {Noze: The outpur cursor keeps track of where the next character
appears in the XHTML document, not where the next character appears in the web page
as rendered by the browser.] The next character written in the XHTML. document appears
immediately after the last character written with write. Thus, when lines 1314 execute,
the ficst character written, “W,” appears immediately after the last character displayed with
write (the > character inside the right double quote in line 12). Fach write or writeln
statement resumes writing characters where the last write or writeln statement stopped
writing characters. So, after a writeln statement, the next output appears on the beginning
of the next line. In effect, the two statements in lines 12-14 result in one line of XHTML
cext. Remember that statements in JavaScript are separated by semicolons (;). Therefore,
lines 13—14 represent only one complete statement. JavaScript allows large statements to
be split over many lines. However, you cannot split a statement in the middie of a string,
The + operator (called the “concatenation operator” when used in this manner) in line 13
joins two strings together and is explained in more detail later in this chapter.

Common Programming Error 6.3

Splitting a statement in the middle of a siving is a syntax error.

200 Internet & World Wide Web How to Program

Note that the characters \" (in line 12) are not displayed in the browser, The back-
slash (\) in a string is an escape character. It indicates that a “special” characrer is to be
used in the string. When a backslash is encountered in a string of characters, the nexr char-
acter is combined with the backslash to form an escape sequence. The escape sequence \"
is the double-quote character, which causes a double-quote character to be inserted into
the string. We use this escape sequence to insert double quotes around the attribute value
for style without terminating the string. Note thar we could also have used single quotes
for the attribute value, as in document.write("<hl style = 'color: magenta'>"):,
because the single quotes do not terminate a double-quoted string. We discuss escape
sequences in greater detail momenuarily.

It is important to note thar the preceding discussion has nothing o do with the actual
rendering of the XHTML text. Remember thar the browser does not create a new line of
text unless the browser window is too narrow for the text being rendered or the browser
encounters an XHTML element that explicitly starcs a new line—for example,
 to
start a new line or <p> to start a new paragraph.

Common Programming Error 6.4

Many people confiuse the writing of XHTML text with the rendering of XKHTML text. Wriring
XHTML sext creates the XHTML that will be rendered by the browser for presentation ro the
user.

Displaying Mulriple Lines of Text

In the next example, we demonstrate that a single statement can cause the browser to dis-
play multiple lines by using line-break XHTML tags (
) throughout the string of
XHTML text in awrite or writeln method call. Figure 6.4 demonstrates the use of line-
break XHTML tags. Lines 12-13 produce three separate lines of text when the browser
renders the XHTMI. document.

document .writeIn("<hl>Welcome to
JavaScript
"
Programmingi</h1>") :

Fig. 6.4 | Printing on multiple fines with a single statement. (Part | of 2.)

JavaScript: Introduction to Scripting 201

g R It eet § ey
e - [# Cloomsomionsdbint 3 4311 [vcie
w 4k ;

Welcome to
JavaScript
Programming!

A LR S S R F

Fig. 6.4 | Printing on muiltiple lines with a single statement. (Part 2 of 2.)

Displaying Text in an Alert Dialog

The first several programs in this chapter display text in the XHTML document. Some-
times it is useful to display information in windows called dialogs (or dialog boxes) chat
“pop up” on the screen to grab the user’s attention. Dialogs typically display impertant
messages 1o users browsing the web page. JavaScript allows you easily to display a dialog
box containing 2 message. The program in Fig. 6.5 displays Welcome to JavaScript Pro-
gramming! as three lines in a predefined dialog called an alert dialog.

Fig. 6.5 | Alert dialog displaying multiple lines. (Part 1 of 2.)

202 Internet & World Wide Web How to Program

Click Rafresh (or Reload) to run this seript agam.

Fig. 6.5 | Alert dialog displaying multiple lines. (Part 2 of 2.)

Line 12 in the script uses the browser’s window object to display an alert dialog. The
argument to the window object’s alert method is the string to display. Executing the pre-
ceding statement displays the dialog shown in the first window of Fig. 6.5. The title bar
of the dialog conrains the string Windows Internet Explorer to indicate that the browser is
presenting a message to the user. The dialog provides an OK button that allows the user to
dismiss (i.e., close) the dialog by clicking the button. To dismiss the dialog, position the
mouse cursor (also called the mouse pointer) over the OK button and click the mouse.
Firefox’s alert dialog looks similar, but the title bar contains the text [JavaScript Application).

Dialogs display plain text; they do not render XHTML. Therefore, specifying XHTML eléments
as part of a string to be displayed in a dialog results in the actual characters of the tags being

displayed. .

Note that the alert dialog contains three lines of plain text. Normally, a dialog dis-
plays the characters in a string exactly as they appear between the double quotes. Note,
however, that the dialog does not display the characters \n. The escape sequence \n is the
newline character. In a dialog, the newline character causes the cursor (j.e., the current
screen position indicator) to move to the beginning of the next line in the dialog. Some
other common escape sequences are listed in Fig. 6.6. The \n, \t and \r escape sequences
in the table do not affect XHTML rendering unless they are in a pre element (this element
displays the text between its tags in a fixed-width font exactly as it is formatted between
the tags, including leading white-space characters and consecutive white-space characters).
The other escape sequences result in characters that will be displayed in plain text dialogs
and in XHTML.

mCommon Programming Error 6.5

Fig. 6.6 | Some common escape sequences. (Part | of 2.)

JavaScript: Introduction to Scripting 203

Fig. 6.6 | Some common escape sequences, (Part 2 of 2.)

Common Programming Error 6.6

XHTML elements in an alert dialog's message are not interpreted as XHTML. This means that
using
, for example, 1o create a line break in an alert box is an error. The string

will simply be included in your message.

6.4 Obtaining User Input with prompt Dialogs

Scripting gives you the ability to geneate part or all of a web page’s content at the time it
is shown to the user. A script can adapt the content based on input from the user or other
variables, such as the time of day or the type of browser used by the client. Such web pages
are said to be dynamic, as opposed to staric, since their content has the ability to change.
The next two subsections use scripts to demonstrate dynamic web pages.

6.4.1 Dynamic Welcome Page

Our next script builds on prior scripts to create a dynamic welcome page that obtains the
user’s name, then displays it on the page. The script uses another predefined dialog box
from the window object—a prompt dialog—which allows the user to input a value that the
script can use. The program asks the user to input a name, then displays the name in the
XHTML document. Figure 6.7 presents the script and sample output. [Note: In later Java-
Script chapters, we obtain input via GUI components in XHTML forms, as introduced
in Chapter 4.]

Line 12 is a declaration that contains the JavaSctipt keyword var. Keywords are
words that have special meaning in JavaScript. The keyword var at the beginning of the
statement indicates that the word name is a variable. A variable is a location in the com-
puter’'s memory where a value can be stored for use by a program. All variables have a
name, type and value, and should be declared with a var statement before they are used in

204 Internet & World Wide Web How to Program

i Lxplores User Prompd
Serph Promer -
Flease shler your name

Hello Jim, welcome to JavaScript
programming!

Click Refresh (or Reload) to run this script again.

Fig. 6.7 | Prompt box used or 2 welcome screen.

a program. Although using var to declare variables is nor required, we will see in
Chapter 9, JavaScript: Functions, that var sometimes ensures proper behavior of a scripr.

The name of a variable can be any valid identifier. An identifier is a series of characrers
consisting of letters, digits, underscores (_) and dollar signs ($) that does not begin with
a digit and is not a reserved JavaScript keyword. [Note: A complete list of keywords can be

JavaScript: Introduction to Scripting 205

found in Fig. 7.2.] Identifiers may not contain spaces. Some valid identifiers are We1come,
$value, _value, m_inputFieldl and button?. The name 7button'is not a valid identifier,
because it begins with a digit, and the name input field is not valid, because it contains
a space. Remember that JavaScript is case sensitive—uppercase and lowercase letters are
considered to be different characters, so name, Name and NAME are different idencifiers.

gxs, Good Programming Practice 6.2

Choosing meaningful variable names belps a script to be “self-documenting” (i.e., easy 1o under-
stand by simply reading the script, rather than having to read manuals or extended comments).

, Good Programming Practice 6.3

| By convention, variable-name identifiers begin with a lowercase first lester. Each subsequent
word should begin with a capizal first letter. For example, identifier itemPrice has a capital P
in ity second word, Price.

, Common Programming Error 6.7

',..E_:__ Splitting a ssatement in the middle of an identifier is a syntax ervor.

Declarations end with a semicolon (;} and can be split over several lines with each
variable in the declaration separated by a comma—known as a comma-separated list of
variable names. Several variables may be declared either in one declaration or in multiple
declarations.

Programmiers often indicate the purpose of each variable in the program by placing a
JavaScript comment at the end of each line in the declaration. In line 12, a single-line
comment that begins with the characters // states the purpose of the variable in the script.
This form of comment is called a single-line comment because it terminates at the end of
the line in which it appears. A // comment can begin at any position in a line of JavaScript
code and continues until the end of the line. Comments do not cause the browser to per-
form any action when the script is interpreted; rather, comments are ignored by the Java-
Script interpreter.

. Good Programming Practice 6.4

Some programmers prefer to declare each variable on a separate line. This format allows for easy
insersion of a descriptive comment next to each declaration. This it a widely followed professional
coding standard,

Another comment notation facilitates the writing of multiline comments. For
example,
/* This is a multiline

comment. It can be
split over many lines. */

is a multiline comment spread over several lines. Such comments begin with the delimiter
/* and end with the delimiter */. All text between the delimiters of the comment is
ignored by the interpreter.

o Common Programming Error 6.8

Forgetting one of the delimiters of @ multiline comment is a syntax error.

206 Internet & World Wide Web How to Program

Common Programming Error 6.9

Nesting mulsiline comments (ie., placing a multiline comment between the delimiters of an-
other multiline comment) is a syntax error.

JavaScript adopted comments delimited with /# and */ from the C programming lan-
guage and single-line comments delimited with // from the C++ programming language.
JavaScript programmers generally prefer C++-style single-line comments over C-style
comments. Throughour this book, we use C++-style single-line comments.

Line 14 is a comment indicating the purpose of the statement in the nexe line. Line
15 calls the window object’s prompt method, which displays the dialog in Fig. 6.8. The
dialog allows the user to enter a string representing the user’s name.

The argument to prompt specifies a message telling the user what to type in the text
field. This message is called a prompt because it dirccts the user to take a specific action.
An optional second argument, separated from the first by a comma, may specify the
default string displayed in the text field; our code does not supply a second argument. In
this case, Interner Explorer displays the default value undefined, while Firefox and most
other browsers leave the text field empty. The user types characters in the text field, then
clicks the OK button to submit the string to the program. We normally receive input from
a user through a GUI component such as the prompt dialog, as in this program, or through
an XHTML form GUI component, as we will see in later chapters.

The user can type anything in the text field of the prompt dialog. For this program,
whatever the user enters is considered the name. If the user clicks the Cancel button, no
string value is sent to the program. Instead, the prompt dialog submits the value null, a
JavaScript keyword signifying that a variable has no value. Note that nul1 is not a string
literal, but rather a predefined term indicating the absence of value. Writing 2 nu11 value
to the document, however, displays the word nu11 in the web page.

The statement in line 15 assigns the value returned by the window object’s prompt
method (a string containing the characters typed by the user—or the default value ot nutl
if the Cance! button is clicked) to variable name by using the assignment operator, =. The
statement is read as, “name gets the value returned by window.prompt("Please enter
your name”).” The = operator is called a binary operator because it has two operands—
name and the result of the expression window. prompt("Please enter your name"). This
entire statement is called an assignment statement because it assigns a value to a variable.
The expression to the right of che assignment operator is always evaluated first.

ribals

Fig. 6.8 | Prompt dialog displayed by the window object’s prompt method.

JavaScript: Introduction to Scripting 207

Good Programming Practice 6.5

Place spaces on either side of a binary aperator. This format makes the operator stand out and
mabkes the program more readable.

Lines 17—18 use document.writeln to display the new welcome message. The expres-
sion inside the parentheses uses the operator + to “add” a string (the literal "<h1>Hello, "),
the variable name (the string that the user entered in line 15) and another string (the literal
", welcome to JavaScript programming! </hix").]avaScript has a version of the + oper-
ator for string concatenation that enables a string and a value of another data type
(including another string) to be combined. The result of this operation is a new (and
normally longer) string. If we assume that name contains the string literal "Jim", the
expression evaluates as follows: JavaScript determines that the two operands of the first +
operator (the string "<h1>HeT1o, " and the value of variablc name) are both strings, then
concatenates the two into one string. Next, JavaScript determines that the two operands
of the second + operator (the result of the first concatenation operation, the string
"chl>Hello, Jim", and the string ", welcome to JavaScript programming!</hl>") are
both strings and concatenates the two. This results in the string "<h1>Hello, Jim, wel-
come to JavaScript programming!</h1>". The browser renders this string as part of the
XHTML document. Note thart the space between Hello, and Jim is part of the string
"<hl>Hello, ".

As we'll illustrate later, the + operator used for string concatenation can convert other
variable types to strings if necessary, Because string concatenation occurs between two
strings, JavaScript must convert other variable types to strings before it can proceed with
the operation. For cxample, if a variable age has an integer value equal to 21, then the
expression "my age is " + age evaluates to the string “my age is 21". JavaScript converts
the value of age to a string and concatenates it with the existing string literal "my age is

Afrer the browser interprets the <head> section of the XHTML document {(which
contains the JavaScript), it then interprets the <body> of the XHTML document {lines
22-24) and renders the XHTML. Notice that the XHTML page is not rendered until the
prompt is dismissed because the prompr pauses execution in the head, before the body is
processed. If you click your browser’s Refresh (Interner Explorer) or Reload (Firefox)
button after entering a name, the browser will reload the XHTML document, so that you
can execute the script again and change the name. [Note: In some cases, it may be necessary
to hold down the Shif key while clicking the Refresh or Reload button, to ensure that the
XHTML document reloads properly. Browsers often save a recent copy of a page in
memory, and holding the Shift key forces the browser to download the most recent version
of a page.]

6.4.2 Adding Integers

Our next script illustrates another use of prompt dialogs to obtain input from the user.
Figure 6.9 inputs two integers (whole numbers, such as 7, =11, 0 and 31914) typed by a
user at the keyboard, computes the sum of the values and displays the result.

Lines 12-16 declare the variables firstNumber, secondNumber, numberl, number2
and sum, Single-line comments state the purpose of each of these variables. Line 19
cmploys a prompt dialog to allow the user to enter a string representing the first of the two

208 Internet & World Wide Web How to Program

Lt b g ¥
= window.prompt(

parselnt(firsthumber);
m;parseInt("tsecondNﬂmbeS%);

LS T \g&ﬁl SrEE g
Fig. 6.9 | Addition script. (Part t of 2.)

JavaScript: Introduction to Scripting 209

The sum is 117

Click Rufresh (or Reload) to rom the scriph again

Fig. 6.9 | Addition script. (Part 2 of 2.)

integers that will be added. The script assigns the first value entered by the user to the vari-
able firstNumber. Line 22 displays a prompt dialog to obtain the second number to add
and assign this value to the variable secondNumber.

As in the preceding example, the user can type anything in the prompt dialog. For this
program, if the user either types a noninteger value or clicks the Cancel button, a logic
error will occur, and the sum of the two values will appear in the XHTML document as
NaN (meaning not a number). A logic error is caused by syntactically correct code that
produces an undesired resule. In Chapter 11, JavaScript: Objects, we discuss the Number
object and its methods that can determine whether a value is not a number.

Recall that a prompt dialog returns to the program as a string the value typed by the
user. Lines 25-26 convert the two strings input by the user to integer values that can be
used in a calculation. Function parselnt converts its string argument to an integer. Line
25 assigns to the variable numberl the integer that function parseInt recurns. Line 26
assigns an integer value to variable number2 in a similar manner. Any subsequent references
to numberl and number2 in the program use these integer values. [Note: We refer to
parselnt as a function rather than a method because we do not precede the function call
with an object name (such as document or window) and a dot (.). The term method means
that the function belongs to a particular object. For example, method writeln belongs to
the document object and method prompt belongs to the window object.]

Line 28 calculates the sum of the variables number1 and number2 using the addition
operator, +, and assigns the result to variable sum by using the assignment operator, =.
Notice that the + operator can perform both addition and string concatenation. In this
case, the + operator performs addition, because both operands contain integers. After line
28 performs this calculation, line 31 uses document.writeln to display the result of the
addition on the web page. Lines 33 and 34 close the script and head elements, respec-
tively. Lines 35-37 render the body of XHTML document. Use your browser’s Refresh or
Reload button to reload the XHTML document and run the script again.

M Common Programming Error 6.10

Confusing the + operator used for string concatenation with the + operator used for addition
often leads to undesired results. For example, if integer variable y has the value 5, the expression
"y+2="4+y+2resultsin "y + 2= 52" not "y + 2= 7", because first the value of y (i.e., 5) is
concatenated with the string "y + 2 = ", then the value 2 is concatenated with the new, larger
string "y + 2 = 5. The expression "y + 2 = " + (y + 2} produces the string "y + 2 = 7" because
vhe parentheses ensure thar y + 2 i executed mathematically before it is conveted to a string.

210 Internet & World Wide Web How to Program

6.5 Memory Concepts

Variable names such as number1, number2 and sum actually correspond to locations in the
computer’s memory. Every variable has a name, a type and a value.

In the addition program in Fig. 6.9, when line 25 executes, the string first Number
(previously entered by the user in a prompt dialog) is converted to an integer and placed
into a memory location to which the name number1l has been assigned by the interpreter.
Suppose the user entered the string 45 as the value for firstNumber. The program converts
firstNumber to an integer, and the computer places the integer value 45 into location
numberl, as shown in Fig. 6.10. Whenever a value is placed in a memory location, the
value replaces the previous value in that location. The previous value is lost.

Suppose that the user enters 72 as the second integer. When line 26 executes, the pro-
gram converts secondNumber to an integer and places that integer value, 72, into location
number?; then the memory appears as shown in Fig. 6.11.

Once the program has obtained values for numberl and number?, it adds the values
and places the sum into variable sum. The statement

sum = numberl + number2;

performs the addition and also replaces sum’s previous value. After sum is calculated, the
memory appears as shown in Fig. 6.12. Note that the values of number1 and number2 app-
ear exactly as they did before they were used in the calculation of sum. These values were
used, but not destroyed, when the computer performed the calculation—when a value is
read from a memory location, the process is nondestructive. . '

numberl

number?

B ‘i‘».

numberi

‘number?

T Sum

Fig. 6.12 | Memory locations aftes calculating the sum of numberl and number2.

JavaScript: Introduction to Scripting 211

Data Types in JavaScript
Unlike its predecessor languages C, C++ and Java, JavaScript does not require variables to
have a declared type before they can be used in a program. A variable in JavaScript can
contain a value of any data type, and in many situations JavaScript automatically converts
between values of different types for you. For this reason, JavaScript is referred to as a
loosely typed language. When a variable is declared in JavaScript, but is not given a value,
the variable has an undefined value. Attempting to use the value of such a variable is nor-
mally a logic error.

When variables are declared, they are not assigned values unless specified by the pro-
grammer, Assigning the value nu11 to a variable indicates that it does not contain 2 value.

6.6 Arithmetic

Many scripts perform arithmetic calculations. Figure 6.13 summarizes the arithmetic
operators. Note the use of various special symbols not used in algebra. The asterisk (¥)
indicates multiplication; the percent sign (%) is the remainder operator, which will be
discussed shortly. The arithmetic operators in Fig. 6.13 are binary operators, because each
operates on two operands. For example, the expression sum + value contains the binary
operator + and the two operands sum and value.

JavaScript provides the remainder operator, %, which yields the remainder after divi-
sion. [Vote: The % operator is known as the modulus operator in some programming lan-
guages.] The expression x % y yields the remainder after x is divided by y. Thus, 17 % 5
yields 2 (i.c., 17 divided by 5 is 3, with a remainder of 2), and 7.4 % 3. 1 yields 1. 2. In later
chapters, we consider applications of the remainder operator, such as determining whether
one number is a multiple of another. There is no arithmetic operator for exponentiation
in JavaScript. (Chapter 8, JavaScript: Control Statements I1, shows how to perform expo-
nentiation in JavaScript using the Math object’s pow method.)

Arithmetic expressions in JavaScript must be written in straight-line form to facilitate
entering programs into the compurer. Thus, expressions such as “a divided by b” must be
written as a / b, so that all constants, variables and operators appear in a straight line. The
following algebraic notation is generally not acceptable to computers:

Fig. 6.13 | Arithmetic operators.

212 Internet & World Wide Web How to Program

Parentheses are used to group expressions in the same manner as in algebraic expres-
sions. For example, to multiply a times the quantity b + ¢ we write:

a*({(b+c)

JavaScript applies the operarors in arithmetic expressions in a precise sequence deter-
mined by the following rules of operator precedence, which are generally the same as

those followed in algebra:

1. Multiplication, division and remainder operations are applied first. If an expres-
sion contains several multiplication, division and remainder operations, cpera-
tors are applied from left to right. Multiplication, division and remainder
opetations are said to have the same level of precedence.

2. Addition and subtraction operations are applied next. If an expression contains
several addition and subtraction operations, operators are applied from left to
right. Addition and subrtraction operations have the same level of precedence.

The rules of operator precedence enable JavaScript to apply opetators in the correct order.
When we say thar operators are applied from left to right, we are referring to the associa-
tivity of the operators—the order in which operators of equal priority are evaluated. We
will see that some operators associate from righr to left. Figure 6.14 summarizes the rules
of operator precedence. The table in Fig. 6.14 will be expanded as additional JavaSeript
operartors are introduced. A complete precedence charr is included in Appendix C.

Now, in light of the rules of operator precedence, let us consider several algebraic
expressions. Each example lists an algebraic expression and the equivalent JavaScript
expression.

The following is an example of an arithmetic mean (average) of five terms:

atb+c+d+e
5
JavaScripp: m=(a+b+c+d+e) /5;

Algebra: m =

The parentheses are required to group the addition operators, because division has higher
precedence than addition. The entire quantity (a+b+ c +d +e) is to be divided by 5. If
the parentheses are erroneously omitted, we obtain a + b + ¢ + d + e / 5, which evaluates as

+b+c+d+ &
a c 3

and would not lead to the correct answer.

Fig. 6.14 | Precedence of arithmetic operators.

JavaScript: Introduction to Scripting 213

The following is an example of the equation of a straight line:
Algebra: y=mx+b
JavaScript: y=m%*x 4+ b;

No parentheses are required. The multiplication operator is applied first, because muli-
plication has a higher precedence than addition. The assignment occurs last, because it has
a lower precedence than multiplication and addition.

The following example conrains remainder (%), multiplication, division, addition and
subtraction operations:

Algebra: z = privg + wi—y

Java: Z =p *r % q+w/ x -y

The circled numbers under the statement indicate the order in which JavaScripr applies
the operators. The multiplication, remainder and division operations are evaluared first in
lefc-to-right order (i.c., they associate from left to right), because they have higher prece-
dence than addition and subtraction. The addition and subtraction operations are evalu-
- ated next. These operartions are also applied from left to right.

To develop 2 better understanding of the rules of operator precedence, consider the
evaluation of a second-degree polynomial (y = ax? + bx + ¢):

y = a * x * x + b * x 1+ c;

The circled numbers indicate the order in which JavaScript applies the operators.
Suppose that a, b, ¢ and x are initialized as follows: a = 2, b= 3, ¢ = 7 and x = 5.
Figure 6.15 illustrates the order in which the operators are applied in the preceding
second-degree polynomial.
As in algebra, it is acceptable to use unnecessary parentheses in an expression to make
the expression clearer. These are also called redundant parentheses. For example, the pre-
ceding second-degree polynomial might be parenthdized as follows:

y=(Ca*x*x)+{(b*x)+c;

Good Programming Practice 6.6

Using parentheses for complex arithmetic expressions, even when the parentheses are not neces-
sary, can make the arithmetic expressions easier to read,

6.7 Decision Making: Equality and Relational Operators

This section introduces a version of JavaScript’s 1f statement that allows a program to
make a decision based on the truth or falsity of a condition. If the condition is met (ie.,
the condition is true), the statement in the body of the i f statement is executed. If the con-
dition is not met (i.e., the condition is false), the statement in the body of the i f statement

214 Internet & World Wide Web How to Program

Stepl y =2 %5754+ 3%5 4+ 7; {Le'ftrﬁo'stmultipiiéd!‘ion.)”

Step 2. _{Leftmast:muﬂ_iptiog;i.on)r [EIPR
Step 3. (Muftlplicatmn before addufon) ; .
Step 4. (Leftmost addition)

Fig. 6.15 | Order in which a second-degree polynomial is evaluated.

is not executed. We will see an example shortly. [Nate: Other versions of the f statement
are introduced in Chapter 7, JavaScript: Conrrol Statements 1.]

Conditions in + f statements can be formed by using the equality operators and rela-
tional operators summarized in Fig. 6.16. The relational operators all have the same level

Fig. 6.16 | Equality and relational operators.

JavaScript: Introduction to Scripting 215

of precedence and associate from left to right. The equality operators both have the same
level of precedence, which is lower than the precedence of the relational operators. The
equality operators also associate from left to right.

It is a syntax error if the operators ==, 1=, >= and <= contain spaces between their symbols, as in
= = | =, > =and < =, respectively.

MCommon Programming Error 6.11

Reversing the operators 1=, >= and <=, as in =1, => and =<, respectively, is a syntax error.

HCommou Programming Error 6.12

Confusing the equality aperator, ==, with the assignment operator, =, is a logic error. The equal-
ity aperator should be read as ‘is equal to,” and the assignment operator showld be read as “gets”
or “gets the value of ” Some people prefer 1o read the equality operator as “double equals” or
“equals equals.”

hCommon Programming Error 6.13

The script in Fig. 6.17 uses four if statements to display a time-sensitive greeting on
a welcome page. The script obtains the local time from the user’s computer and converts
it from 24-hour clock format {0—-23) o a 12-hour clock format (0-11). Using this value,
the script displays an appropriate greeting for the current time of day. The script and
sample output are shown in Fig, 6.17.

Lines 12-14 declare the variables used in the script. Remember that variables may be
declared in one declaration or in multiple declarations. If more than one variable is
declared in a single declaration (as in this example), the names are separated by commas
(,). This list of names is referred to as a comma-separated list. Once again, note the com-
ment at the end of each line, indicating the purpose of each variable in the program. Also
note that some of the variables are assigned a value in the declaration—JavaScripr allows
you 1o assign a value to a variable when the variable is declared.

Fig. 6.17 | Using equality and relational operators. (Part | of2)

216 Internet & World Wide Web How to Program

Good Afternoon, Jim, welcome to
JavaScript programming!

Clicik Refresh (or Reload) 1o run this sciipt again.

Fig. 6.17 | Using equality and relational operators. (Part 2 of 2.)

Line 13 sets the variable now to a new Date object, which contains information about
the current local time. In Section 6.2, we introduced the document object, an object that
encapsulates data perezining to the current web page. Programmers may choose to use

JavaScript: Introduction to Scripting 217

other objects to perform specific tasks or obtain particular pieces of information. Here, we
use JavaScript’s built-in Date object to acquire the current local time. We create a new
instance of an object by using the new operator followed by the type of the object, Date,
and a pair of parentheses. Somne objects require that arguments be placed in the parentheses
to specify derails about the object to be created. In this case, we leave the parentheses empty
to create a default Date object containing information about the current date and time.
After line 13 execurtes, the variable now refers to the new Date object. [Noze: We did not
need to use the new operator when we used the document and window objects because these
objects always are created by the browser.] Line 14 sets the variable hour to an integer equal
to the current hour (in a 24-hour clock formar) returned by the Date object’s getHours
method. Chapter 11 presents a more detailed discussion of the Date object’s attributes
and methods, and of objects in general. As in the preceding example, the script uses
window. prompt to allow the user ro enter a name to display as part of the greeting (line 17).

To display the correct time-sensitive greeting, the script must determine whether the
user is visiting the page during the morning, afternoon or evening. The first 1f statement
(lines 20—-21) compares the value of variable hour with 12. If hour is less than 12, then the
user is visiting the page during the morning, and the statement at line 21 outputs the string
“Good morning". If this condition is not met, line 21 is not executed. Line 24 determines
whether hour is greater than or equal to 12. If hour is greater than or equal to 12, then the
user is visiting the page in either the afternoon or the evening. Lines 25-36 executc to
determine the appropriate greeting. If hour is less than 12, then the JavaScript interpreter
does not execute these lines and continues to line 38.

The brace { in line 25 begins a block of statements (lines 27-35) that are all executed
together if hour is greater than or equal to 12—1to execute multiple statements inside an
if construct, enclose them in curly braces. Line 27 subrracts 12 from hour, converting the
current hour from a 24-hour clock formart {0-23) to a 12-hour clock format (0-11). The
$F statement (line 30) determines whether hour is now less than 6. If it is, then the time
is berween noon and 6 PM, and line 31 outputs the beginning of an XHTML h1 element
("<h1>Good Afternoon, "). If hour is greater than or equal to 6, the time is berween 6 PM
and midnight, and the script outputs the greering "Good Evening™ (lines 34-35). The
brace } in line 36 ends the block of statements associated with the if statement in line 24.
Note that i statements can be nested, i.c., one 1 f statement can be placed inside another
i statement. The i statements that determine whether the user is visiting the page in the
afternoon or the evening (lines 30—31 and lines 34-35) execute only if the script has
already established that hour is greater than or equal to 12 (line 24). If the script has already
determined the current time of day to be morning, these additional comparisons are not
performed. (Chapter 7, JavaScript: Control Statements I, presents a more in-depth discus-
sion of blocks and nested if statements.} Finally, lines 38-39 output the rest of the
XHTML h1 element (the remaining part of the greeting), which does not depend on the
time of day.

Good Programming Practice 6.7

Include comments afier the closing curly brace of consrol statements (such as 1f statements) to
indicase where the statements end, as in line 36 of Fig. 6.17.

Note the indentation of the 1f statements throughout the program. Such indentation
enhances program readabiliry.

218 Internet & World Wide Web How to Program

Good Programming Practice 6.8

Indent the statement in the body of an 1 f statement to make the body of the statement stand our
and to enhance program readabiliry.

M Place only one stasement per line in a program. This enhances program readability.

Good Programming Practice 6.9
L

Forgetting the left andfor right parentheses for the condition in an if statement is a syntax error.
The parentheses are required.

ﬂCommon Programming Error 6.14

Note that there is no semicolon (;) at the end of the first line of each if statement.
Including such 2 semicolon would result in a logic error at execution time. For example,

if (hour < 12) ;
document.write("<hl>Good Morning, ");

would actually be interpreted by JavaScript erroneously as

if (hour < 12)

document.write("<hl>Good Morning, ");

where the semicolon on the line by itself—called the empty statement—is the statement
to execute if the condition in the f statement is true. When the empty statement executes,
no task is performed in the program. The program then conrtinues with the next statement,
which executes regardless of whether the condition is true or false. In this example,
"<h1>Cood Morning, " would be printed regardless of the time of day.

Placing a semicolon immediately afier the right parenthesis of the condition in an 1 f statement
is normally a logic error. The semicolon would cause the body of the ¥ statement to be empsy,
50 the 11 statement itself would perform no action, regardless of whether its condition was true.
Worse yet, the intended body statement of the 1 F statement would now become a statement in
sequence after the 1F statement and would always be executed,

M Common Programming Error 6.15

Leaving out a condition in a series of i statements is normally a logic error. For instance, check-
ing if hour is greater than 12 or less than 12, but not if hour is equal to 12, would mean that
the script takes no action when hour is equal to 12. Always be sure 1o handle every possible con-
dition. :

m Common Programming Error 6.16

Note the use of spacing in lines 38-39 of Fig. 6.17. Remember that white-space char-
acters, such as tabs, newlines and spaces, are normally ignored by the browser. So, state-
ments may be split over several lines and may be spaced according to the programmer’s
preferences withour affecting the meaning of a program. However, it is incorrect to split
identifiers and string literals. [deally, statements should be kept small, but it is not always
possible to do so.

JavaScript: Introduction to Scripting 219

Good Programming Practice 6.10

A lengthy stasement may be spread over several lines. If a single statement must be split across
lines, choose breaking points that make sense, suck as after a comma in a comma-separated list
or aféer an operator in a lengthy expression. If a statement is split across two or more lines, indent
all subsequent lines.

The chart in Fig. 6.18 shows the precedence of the operators introduced in this
chapter. The operators are shown from top to bottom in decreasing order of precedence.
Note that all of these operators, with the exception of the assignment operator, =, associate
from left to right. Addition is left associative, so an expression like x + y + z is evaluated as
if it had been written as (x + y) + z. The assignment operator, =, associates from right to
left, so an expression like x =y = 0 is evaluated as if it had been written as x = (y =0), which
first assigns the value 0 to variable y, then assigns the result of that assignment, 0, to x.

Good Programming Practice 6.11

Refer to the aperator precedence chart when writing expressions containing many operators. Con-

firm that the operations are performed in the order in which you expect them to be performed. If
you are uncertain about the order of evaluation in a complex expression, use parentheses to force

the order, exactly as you would do in algebraic expressions. Be sure 1o observe that some operators,

such as assignment (=), associate from right to lefi rasher than from lefs to right.

Fig. 6.18 | Precedence and associativity of the operators discussed so far.

6.8 Web Resources

www . deitel.com/javascript

The Deitel JavaScript Resoutce Center contains links to some of the best JavaScript resources on the
web. There you'll find categorized links to JavaScript tools, code generators, forums, books, libraries,
frameworks and more. Also check out the tutorials for all skill levels, from introductory to advanced.

5

i :
=

3 :.Java-Scriﬂ:-i*inﬁod'ucﬁuﬁ:to Scﬁpsting B

: _"k ngmmmm often'mdlcate :he purpose of 2 variable in the program by piacmg aJmScr;pt com-
- ment at the end of the variable’s declaration; A'single-line comment begins with the characeers./.

- # and terminates at the end of the line’ Commients do not cause the browser 1o péfﬁ)rm any

. action: whm the. scnpt isin rerprewé racher, comments are ignored by thcjavﬁScnpt interpreter)

+ Multiline comments begin with delimizer /+ and end with delimiter */. All text bctwcm the

,dcﬁmim of the comment is lgnorcd by the i interpreter. et
. 'I'hevm\douob,ect spmp: suethod displays a dialog into which the user can type A valur.. Th:< ni

first asgument is 3 message {called a. prompt) that directs the user to take 2 specific ac:ucm.'ﬂic
optional mndnrgwmm is thie defanle string to display int the text field. & 0 ‘
o A varisble it assigned 4 valtic with an assignment statement, using the assignment apmtaf, -
-, The =-opeator iis called a bmary operator, because it has two operands: -
Themﬂ kcyWord sagmﬁm that a variable has no value. Note thac nu11 is nota stmgﬂ&:ta{ ,

chined term mdicam;g the absence of value. Wrmng 4’1 value to thc ﬂécumm

' zn'e:mf assigned dcfhult values, unless spcc:ﬁcd OWby l:he :
Ledoes not.contain avalue, you can assxgn tbavahseﬂull makt. S

: ;&7 Decman Mmg. Equduy and Reﬂztwnaf Opemtaﬁ
& ""‘_swfmtememfaﬂawsapwgmmmmakeadecmmn based on the Jor Fals
. (i. .-”thg__condmon is true) the: smt‘cm:mt dn th

226; Intemet & World Wide Web How to Program

') - Declare the vanabiw wval, yVa‘I and zval,
d) Prompt the user to enter: thc F irst vniue, tead the value fmm l:h: nmandm
variable xva1. *

o vatizble 2val. Y : “
2 Coovere.xval: manmeger,mdxmrc the resultin thcmmblae x.
h) Convert yWal to an integes. and. stose the result in the variable y.
i) Convert 2val 1o an integer, and store the.result ity thic variable 2. 5 ¢ 5
j). .Compute the product of the three in *cgcrs ocmtamed in mbies 37 ahd z, aﬂ& :

the resuls to the variable resuTz. - - :

k) Write a line of XHTML text centa:mng rhe srrmg T

" “value of the variable result, . .. ;'::..

"‘a) D:splay*the mes'sagc “Eiter two. faumber
i b} Assign the product of vambles band'cto vanable

.. b} The foﬂmngareall valid- mﬂe«nm _unde"

L ahispSaccount toral, asb$, c zp 2o < o
<) Avahd]avaSmp:anthmencapmnwnhm ;
“d) The fo]lowmgarcaﬁmvahdmb!e names: 39,&?, 6?[32 h“lz th___ o

- :Fill irx the blanks in cach of thc fnllomng smemenm-,

b} When parentheses are nested, which sct of paremhm isey
wpmmsmn’
€} Alocation in the computer’s memory that mymmmd&mw&um
throughout the execution of a pmgram iscalled a

Whatd:splays m::hemessage dmbgwhmmchofdm gwm}xm&upmmmcmnsper_

Emmd.Asmmetlmtx=2amiy=3

2) window.alert("x =" + x)i . IR
b} window.alert(“The value of x + x is "+ (x + %))

") window.alert("x =*); B
d) window.alert((x +y)} +

Given y = ax’ + 7, whicl of the fnllowmg are correct]ava&:ngat statemcms B:;r :ﬁ:s

=_'f+(y+x))._,-

ll

a) ¥ d*x"x"x+?
by = ar vt (x + 7
gy s @t x) Exr (xos D

. jﬂ"ﬁ'impttnmducﬂon to Scﬁp_ti:ng 228

; mdesctheconstantvaluca 14159 form. Use the
You may also use the predefined constant MathaP1 for the
than the value 3.14159. The Magh object isdefined by Java:

ical capabilities wm&mrgformmt mfi%

vo integess mcl dctcrsmm and outpum }G-ITML text t}m; d:s-
- of the second: [Hmr Use the remamdcr operator.}

§quaresand cubesofthc niambers from 0 o mmdoutputs
valuies in‘ar XHTML table format; as followss: 77

uin my input from the user.]

R
AN

»?&:‘w i

Lets all move one place on,

—bewis Carrolf

Fhe wheel is come full cired

illiany Shakespeare

How wmany apples fell ou
Newron’s head before he tools
U’}(' /)f!l!."’

—Robert Frost

s
e

Tk

